A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae.

نویسندگان

  • Hélène L Citerne
  • Da Luo
  • R Toby Pennington
  • Enrico Coen
  • Quentin C B Cronk
چکیده

Numerous TCP genes (transcription factors with a TCP domain) occur in legumes. Genes of this class in Arabidopsis (TCP1) and snapdragon (Antirrhinum majus; CYCLOIDEA) have been shown to be asymmetrically expressed in developing floral primordia, and in snapdragon, they are required for floral zygomorphy (bilaterally symmetrical flowers). These genes are therefore particularly interesting in Leguminosae, a family that is thought to have evolved zygomorphy independently from other zygomorphic angiosperm lineages. Using a phylogenomic approach, we show that homologs of TCP1/CYCLOIDEA occur in legumes and may be divided into two main classes (LEGCYC group I and II), apparently the result of an early duplication, and each class is characterized by a typical amino acid signature in the TCP domain. Furthermore, group I genes in legumes may be divided into two subclasses (LEGCYC IA and IB), apparently the result of a duplication near the base of the papilionoid legumes or below. Most papilionoid legumes investigated have all three genes present (LEGCYC IA, IB, and II), inviting further work to investigate possible functional difference between the three types. However, within these three major gene groups, the precise relationships of the paralogs between species are difficult to determine probably because of a complex history of duplication and loss with lineage sorting or heterotachy (within-site rate variation) due to functional differentiation. The results illustrate both the potential and the difficulties of orthology determination in variable gene families, on which the phylogenomic approach to formulating hypotheses of function depends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae.

Monosymmetry evolved several times independently during flower evolution. In snapdragon (Antirrhinum majus), a key gene for monosymmetry is CYCLOIDEA (CYC), which belongs to the class II TCP gene family encoding transcriptional activators. We address the questions of the evolutionary history of this gene family and of possible recruitment of genes homologous to CYC in floral development and sym...

متن کامل

An expanded evolutionary role for flower symmetry genes

CYCLOIDEA (CYC)-like TCP genes are critical for flower developmental patterning. Exciting recent breakthroughs, including a study by Song et al. published in BMC Evolutionary Biology, demonstrate that CYC-like genes have also had an important role in the evolution of flower form.

متن کامل

Evolution and Expression Patterns of TCP Genes in Asparagales

CYCLOIDEA-like genes are involved in the symmetry gene network, limiting cell proliferation in the dorsal regions of bilateral flowers in core eudicots. CYC-like and closely related TCP genes (acronym for TEOSINTE BRANCHED1, CYCLOIDEA, and PROLIFERATION CELL FACTOR) have been poorly studied in Asparagales, the largest order of monocots that includes both bilateral flowers in Orchidaceae (ca. 25...

متن کامل

Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives.

The CYCLOIDEA (CYC) and DICHOTOMA (DICH) genes encode related TCP transcription factors that control floral asymmetry in Antirrhinum majus. Analysis of sequences from relatives of Antirrhinum suggested that CYC and DICH arose from a gene duplication in an ancestor of the tribe Antirrhineae and have subsequently evolved at similar rates. Coding regions outside the conserved functional TCP and R ...

متن کامل

Comparative phylogenomic analysis provides insights into TCP gene functions in Sorghum

Sorghum is a highly efficient C4 crop with potential to mitigate challenges associated with food, feed and fuel. TCP proteins are of particular interest for crop improvement programs due to their well-demonstrated roles in crop domestication and shaping plant architecture thereby, affecting agronomic traits. We identified 20 TCP genes from Sorghum. Except SbTCP8, all are either intronless or co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2003